Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nazan Ocak, ${ }^{\text {a* }}$ Orhan Büyükgüngör, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar, ${ }^{\text {b }}$ Musa Özil ${ }^{\text {b }}$ and Ahmet Erdönmez ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 KurupelitSamsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.118$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethyl 2,2'-(4,5-dicyano-o-phenylenedioxy)dibenzoate

There are two independent molecules in the structure of the title compound, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$, one in a general position, the other on a twofold axis of space group Pbcn. There are thus one and a half molecules in the asymmetric unit. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions exert some influence on the molecular conformation and packing in the crystal structure.

Comment

Phthalonitriles are known precursors to phthalocyanines, an important class of molecules with wide applications, ranging from catalysis to solid-state materials (McKeown, 1998). For many years, phthalocyanines have attracted continued interest in various research fields, such as chemical sensors, electrochromism, batteries, photodynamic therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff \& Lever, 1989-1996).

For these reasons, the structure of phthalonitrile derivatives with different substituents have been of much interest in our laboratory (Ocak et al., 2003; Ocak, Çoruh et al., 2004; Ocak, Işik et al., 2004). The molecular structure of the title compound, (I), is shown in Fig. 1. Tables 1 and 2 list selected geometric parameters and the hydrogen-bonding geometry, respectively.

The molecules consist of a phthalonitrile moiety carrying two 2-hydroxybenzoic acid methyl ester substituents at C6, C7 (Fig. 2), C28 and C28 ${ }^{i}$ [symmetry code: (i) $\left.1-x, y, \frac{3}{2}-z\right]$. The $\mathrm{N} \equiv \mathrm{C}$ distances of 1.141 (3), 1.139 (3) and 1.133 (3) A are similar to other values reported in the literature (Subbiah Pandi et al., 2002; Ocak, Işik et al., 2004). The O1-C7, O2C6 and O7-C28 distances are 1.371 (3), 1.370 (3) and 1.377 (3) A, respectively, and also show good agreement with corresponding distances reported previously. All bond lengths in the ester groups agree with those of other esters (Çoruh et al., 2002; Bujak et al., 2002).

The crystal structure is stabilized by intramolecular C5H5..O6 and C27-H27..O6 interactions, and intermolecular $\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 1^{\mathrm{ii}}$ and $\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{~N} 2^{\mathrm{iii}}$ close contacts (see Table 2 for details and symmetry codes). The crystal structure also shows an intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$

Received 18 February 2004 Accepted 25 February 2004 Online 6 March 2004

An ORTEPIII drawing of the two molecules of the title compound, showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
interaction (C24-H24B‥Cg5, where Cg5 is the centroid of the C29-C34 ring; Table 2).

Experimental

Methyl 2-hydroxybenzoate ($1.60 \mathrm{~g}, 10.53 \mathrm{mmol}$) and 4,5-dichloro-1,2dicyanobenzene $(1.00 \mathrm{~g}, 5.08 \mathrm{mmol})$ were heated at 333 K in dry DMSO (50 ml) with stirring under nitrogen. Dry fine-powdered potassium carbonate $(1.70 \mathrm{~g}, 12.32 \mathrm{mmol})$ was added in portions ($12 \times 1 \mathrm{mmol}$) every 10 min . The mixture was heated for a further 48 h . After cooling, the mixture was poured into ice water (200 g). The product was filtered off and washed with (10% w/w) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave a yellow product. Yield $0.45 \mathrm{~g}, 20.74 \%$. Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 377 K). Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 67.29, H 3.76, N 6.54%; found: C 67.40, H $3.60, \mathrm{~N}$ 6.40%. IR ($\nu_{\max }, \mathrm{cm}^{-1}$): 3110-3037 (Ar-CH), 2995-2839 (CH), 2225 (CN) 1728 (C=O), 1608, 1587, 1568, 1502, 1483, 1444, 1425, 1402, $1336,1277,1219,1126,1080,955,885,847,804,764,702,671,633,532$.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=428.39$
Orthorhombic, Pbcn
$a=22.1158(16) \AA$
$b=12.8114(9) \AA$
$c=21.802(2) \AA$
$V=6177.2(9) \AA^{3}$
$Z=12$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: none 82028 measured reflections 6080 independent reflections 2621 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=0.80$
6080 reflections
434 parameters
H -atom parameters constrained
Mo $K \alpha$ radiation
Cell parameters from 24564
\quad reflections
$\theta=1.8-24.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.33 \times 0.27 \times 0.20 \mathrm{~mm}$

Mo $K \alpha$ radiation
Cell parameters from 24564 reflections
$\theta=1.8-24.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.33 \times 0.27 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.093 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-27 \rightarrow 27 \\
& k=-15 \rightarrow 15 \\
& l=-26 \rightarrow 26
\end{aligned}
$$

[^0]

Figure 2
Packing diagram of the structure, viewed down the b axis.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.371(3)$	$\mathrm{O} 6-\mathrm{C} 23$	$1.205(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.400(3)$	$\mathrm{O} 7-\mathrm{C} 28$	$1.377(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.370(3)$	$\mathrm{O} 7-\mathrm{C} 29$	$1.398(3)$
$\mathrm{O} 2-\mathrm{C} 17$	$1.401(3)$	$\mathrm{O} 8-\mathrm{C} 35$	$1.331(3)$
$\mathrm{O} 3-\mathrm{C} 15$	$1.200(3)$	$\mathrm{O} 8-\mathrm{C} 36$	$1.443(4)$
$\mathrm{O} 4-\mathrm{C} 15$	$1.345(3)$	$\mathrm{O} 9-\mathrm{C} 35$	$1.198(3)$
$\mathrm{O} 4-\mathrm{C} 16$	$1.447(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.141(3)$
$\mathrm{O} 5-\mathrm{C} 23$	$1.334(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.139(3)$
$\mathrm{O} 5-\mathrm{C} 24$	$1.450(3)$	$\mathrm{N} 3-\mathrm{C} 25$	$1.133(3)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 9$	$117.26(17)$	$\mathrm{O} 3-\mathrm{C} 15-\mathrm{O} 4$	$123.2(3)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 17$	$115.67(19)$	$\mathrm{O} 6-\mathrm{C} 23-\mathrm{O} 5$	$123.6(3)$
$\mathrm{C} 28-\mathrm{O} 7-\mathrm{C} 29$	$120.00(19)$	$\mathrm{O} 7-\mathrm{C} 28-\mathrm{C} 28^{\mathrm{i}}$	$115.26(12)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 5$	$123.4(2)$	$\mathrm{O} 9-\mathrm{C} 35-\mathrm{O} 8$	$123.6(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$115.3(2)$		
			$-5.4(4)$
$\mathrm{C} 17-\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 5$	$-29.3(3)$	$\mathrm{C} 29-\mathrm{O} 7-\mathrm{C} 28-\mathrm{C} 27$	
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$11.2(3)$		

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
Cg5 is the centroid of the $\mathrm{C} 29-\mathrm{C} 34$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O} 6$	0.93	2.39	$3.159(3)$	140
C27-H27 \cdots O6	0.93	2.53	$3.293(3)$	139
C21-H21 O^{ii}	0.93	2.58	$3.450(3)$	157
C30-H30 N^{i}	0.93	2.57	$3.393(4)$	147
C24-H24B $\cdots \mathrm{Cg}^{\mathrm{iii}}$	0.96	2.75	$3.624(4)$	152

Symmetry codes: (i) $1-x, y, \frac{3}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (iii) $\frac{3}{2}-x, y-\frac{1}{2}, z$.
H atoms were positioned geometrically and included in the refinement in a riding model, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and methyl group $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}\right)$ and $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ of the parent atom.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Bujak, M., Zaleski, J., Prezhdo, V. \& Uspenskiy, B. (2002). Acta Cryst. C58, 7677.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Çoruh, U., Akdemir, N., Ağar, E., Kim, Y. \& Erdönmez, A. (2002). Acta Cryst. E58, o994-0996.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). In Phthalocyanines:Properties and Applications, Vols. 1,2,3 and 4. Weinheim/New York: VCH Publishers Inc.
McKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. \& Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Ocak, N., Işık, Ş., Akdemir, N., Kantar, C., Ağar, E. (2004). Acta Cryst. E60, o361-o362.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M. J., Senthilvelan, A. \& Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0599 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
 $\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.00106 (16)

